Emergent eigenstate solution to quantum dynamics far from equilibrium

Marcos Rigol

Department of Physics The Pennsylvania State University

3rd KIAS workshop Quantum Information and Thermodynamics

Seoul, Korea

September 18, 2017

Marcos Rigol (Penn State)

Emergent eigenstate solution

Outline

Introduction

- Experiments with ultracold gases in 1D
- Emergence of guasi-condensates at finite momentum

Emergent eigenstate solution

- Noninteracting fermions and related models
- Spinless fermions with nearest neighbor interactions (XXZ chain)

Emergent Gibbs ensemble

- Effective cooling during the melting of a Mott insulator
- Emergent Gibbs ensemble

Maximal work from a "quantum battery"

- Speed up (quasi-)adiabatic transformations
- "Quantum battery"

Summary

4 = > 4 = >

Outline

Introduction Experiments with ultracold gases in 1D Emergence of guasi-condensates at finite momentum Noninteracting fermions and related models Spinless fermions with nearest neighbor interactions (XXZ chain) Effective cooling during the melting of a Mott insulator Emergent Gibbs ensemble Speed up (quasi-)adiabatic transformations • "Quantum battery"

A (P) > A (P) > A (P)

Experiments with ultracold gases in 1D

Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

 $U_{1D}(x) = g_{1D}\delta(x)$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m\omega_\perp}{2\hbar}}}$$

Experiments with ultracold gases in 1D

Girardeau '60, Lieb and Liniger '63

- T. Kinoshita, T. Wenger, and D. S. Weiss, Science **305**, 1125 (2004).
- T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. **95**, 190406 (2005).

$$\gamma_{
m eff} = rac{mg_{1D}}{\hbar^2
ho}$$

Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

$$U_{1D}(x) = g_{1D}\delta(x)$$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m\omega_\perp}{2\hbar}}}$$

Marcos Rigol (Penn State)

Experiments with ultracold gases in 1D

Effective one-dimensional δ potential M. Olshanii, PRL **81**, 938 (1998).

 $U_{1D}(x) = g_{1D}\delta(x)$

where

$$g_{1D} = \frac{2\hbar a_s \omega_\perp}{1 - C a_s \sqrt{\frac{m\omega_\perp}{2\hbar}}}$$

Lieb, Schulz, and Mattis '61 B. Paredes *et al.*, Nature (London) **429**, 277 (2004).

n(x): Density distributionn(p): Momentum distribution

Emergent eigenstate solution

L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman, S. Langer, F. Heidrich-Meisner, I. Bloch, U. Schneider, PRL **115**, 175301 (2015).

Theoretically predicted in: MR and A. Muramatsu, PRL **93**, 230404 (2004).

Marcos Rigol (Penn State)

Emergent eigenstate solution

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

Introduction

- Experiments with ultracold gases in 1D
- Emergence of quasi-condensates at finite momentum
- Emergent eigenstate solution
 - Noninteracting fermions and related models
 - Spinless fermions with nearest neighbor interactions (XXZ chain)
- Emergent Gibbs ensemble
 - Effective cooling during the melting of a Mott insulator
 - Emergent Gibbs ensemble
- 4 Maximal work from a "quantum battery"
 - Speed up (quasi-)adiabatic transformations
 - "Quantum battery"

Summary

A (P) > A (P) > A (P)

Bose-Fermi mapping in a 1D lattice ($U \gg J$)

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} \mu_{i} \ \hat{n}_{i}$$

Constraints on the bosonic operators

$$\hat{b}_i^{\dagger 2}=\hat{b}_i^2=0$$

Bose-Fermi mapping in a 1D lattice ($U \gg J$)

Hard-core boson Hamiltonian in an external potential

$$\hat{H} = -J\sum_{i} \left(\hat{b}_{i}^{\dagger} \hat{b}_{i+1} + \text{H.c.} \right) + \sum_{i} \mu_{i} \ \hat{n}_{i}$$

Constraints on the bosonic operators

$$\hat{b}_i^{\dagger 2} = \hat{b}_i^2 = 0$$

Map to spins and then to fermions (Jordan-Wigner transformation)

$$\hat{\sigma}_{i}^{+} = \hat{f}_{i}^{\dagger} \prod_{\beta=1}^{i-1} e^{-i\pi \hat{f}_{\beta}^{\dagger} \hat{f}_{\beta}}, \quad \hat{\sigma}_{i}^{-} = \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_{\beta}^{\dagger} \hat{f}_{\beta}} \hat{f}_{i}$$

Non-interacting fermion Hamiltonian

$$\hat{H}_F = -J\sum_i \left(\hat{f}_i^{\dagger} \hat{f}_{i+1} + \text{H.c.} \right) + \sum_i \mu_i \; \hat{n}_i^f$$

One-particle density matrix

One-particle Green's function

$$G_{ij} = \langle \Psi_{HCB} | \hat{\sigma}_i^- \hat{\sigma}_j^+ | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i \hat{f}_j^\dagger \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_\gamma^\dagger \hat{f}_\gamma} | \Psi_F \rangle$$

Time evolution

$$|\Psi_F(t)\rangle = e^{-i\hat{H}_F t} |\Psi_F^I\rangle = \prod_{\delta=1}^N \sum_{\sigma=1}^L P_{\sigma\delta}(t)\hat{f}_{\sigma}^{\dagger} |0\rangle$$

æ

・ロト ・四ト ・ヨト ・ヨト

One-particle density matrix

One-particle Green's function

$$G_{ij} = \langle \Psi_{HCB} | \hat{\sigma}_i^- \hat{\sigma}_j^+ | \Psi_{HCB} \rangle = \langle \Psi_F | \prod_{\beta=1}^{i-1} e^{i\pi \hat{f}_\beta^\dagger \hat{f}_\beta} \hat{f}_i \hat{f}_j^\dagger \prod_{\gamma=1}^{j-1} e^{-i\pi \hat{f}_\gamma^\dagger \hat{f}_\gamma} | \Psi_F \rangle$$

Time evolution

$$|\Psi_F(t)\rangle = e^{-i\hat{H}_F t} |\Psi_F^I\rangle = \prod_{\delta=1}^N \sum_{\sigma=1}^L P_{\sigma\delta}(t)\hat{f}_{\sigma}^{\dagger} |0\rangle$$

Exact Green's function

$$G_{ij}(t) = \det\left[\left(\mathbf{P}^{l}(t)\right)^{\dagger}\mathbf{P}^{r}(t)\right]$$

Computation time $\propto L^2 N^3 \rightarrow$ study very large systems

 ~ 10000 lattice sites, ~ 1000 particles

MR and A. Muramatsu, Mod. Phys. Lett. B 19, 861 (2005).

Marcos Rigol (Penn State)

・ロン ・四 と ・ ヨ と ・ ヨ と

1D lattice in equilibrium ($U \gg J$)

Quasi-condensation in the presence of a trap

MR and A. Muramatsu, PRA 72, 013604 (2005).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 9 / 41

э

1D lattice in equilibrium ($U \gg J$)

Quasi-condensation in the presence of a trap

The Mott insulator in the presence of a trap

Marcos Rigol (Penn State)

Density and momentum profiles during the expansion

MR and A. Muramatsu, PRL 93, 230404 (2004).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 10 / 41

A (10) > A (10) > A (10)

Density and momentum profiles during the expansion

10/41

Velocity of the quasi-condensate

$$v_{NO} = \pm 2aJ = \frac{\partial \epsilon_k}{\partial k}$$

Dispersion in the lattice

 $\epsilon_k = -2J\cos ka \implies k = \pm \pi/2a$

4 AR & A F &

Velocity of the quasi-condensate

$$v_{NO} = \pm 2aJ = \frac{\partial \epsilon_k}{\partial k}$$

Dispersion in the lattice

 $\epsilon_k = -2J\cos ka \implies k = \pm \pi/2a$

Quasi-condensate occupation $\lambda_0^{\max} \propto \sqrt{N}$

Spatial coherence

$$|\rho_{ij}| \propto 1/\sqrt{|x_i - x_j|} =$$

Emergence of quasi-condensates (finite U)

Density and momentum profiles during the expansion (U = 40J)

Rodriguez, Manmana, MR, Noack, and Muramatsu, NJP 8, 169 (2006). (tDMRG)

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 12 / 41

Emergence of quasi-condensates (finite U)

Density and momentum profiles during the expansion (U = 40J)

Quasi-condensate momenta

Rodriguez, Manmana, MR, Noack, and Muramatsu, NJP 8, 169 (2006). (tDMRG)

Marcos Rigol (Penn State)

I. Hen and MR, PRL 105, 180401 (2010).

Marcos Rigol (Penn State)

Emergent eigenstate solution

э

I. Hen and MR, PRL 105, 180401 (2010).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 13 / 41

I. Hen and MR, PRL 105, 180401 (2010).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 13 / 41

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017

13/41

Outline

Experiments with ultracold gases in 1D Emergence of guasi-condensates at finite momentum Emergent eigenstate solution Noninteracting fermions and related models Spinless fermions with nearest neighbor interactions (XXZ chain) Effective cooling during the melting of a Mott insulator Emergent Gibbs ensemble Speed up (quasi-)adiabatic transformations • "Quantum battery"

Summary

A (10) > A (10) > A (10)

Spontaneous emergence of ground-state-like correlations
 Free fermions: Antal, Rácz, Rákos, and Schütz, PRE 59, 4912 (1999).
 Hard-core bosons: MR and A. Muramatsu, PRL 93, 230404 (2004).

Spontaneous emergence of ground-state-like correlations
 Free fermions: Antal, Rácz, Rákos, and Schütz, PRE 59, 4912 (1999).
 Hard-core bosons: MR and A. Muramatsu, PRL 93, 230404 (2004).

 Ground-state construction in inhomogeneous fields for correlations and entanglement entropy
 Fermi Hubbard: Heidrich-Meisner, MR, Muramatsu, Feiguin, and Dagotto, PRA 78, 013620 (2008).
 Free fermions: V. Eisler and I. Peschel, J. Stat. Mech. P02011 (2009).

- Spontaneous emergence of ground-state-like correlations
 Free fermions: Antal, Rácz, Rákos, and Schütz, PRE 59, 4912 (1999).
 Hard-core bosons: MR and A. Muramatsu, PRL 93, 230404 (2004).
- Ground-state construction in inhomogeneous fields for correlations and entanglement entropy
 Fermi Hubbard: Heidrich-Meisner, MR, Muramatsu, Feiguin, and Dagotto, PRA 78, 013620 (2008).
 Free fermions: V. Eisler and I. Peschel, J. Stat. Mech. P02011 (2009).
- Is the time-evolving state the ground state of a local Hamiltonian? Free fermions (and related models) & spin-1/2 XXZ:
 L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

- Spontaneous emergence of ground-state-like correlations Free fermions: Antal, Rácz, Rákos, and Schütz, PRE **59**, 4912 (1999). Hard-core bosons: MR and A. Muramatsu, PRL **93**, 230404 (2004).
- Ground-state construction in inhomogeneous fields for correlations and entanglement entropy
 Fermi Hubbard: Heidrich-Meisner, MR, Muramatsu, Feiguin, and Dagotto, PRA 78, 013620 (2008).
 Free fermions: V. Eisler and I. Peschel, J. Stat. Mech. P02011 (2009).
- Is the time-evolving state the ground state of a local Hamiltonian? Free fermions (and related models) & spin-1/2 XXZ:
 L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

This problem is a classic example of a (geometric) quantum quench: $|\psi_0\rangle$ is an eigenstate of some \hat{H}_0 (local), and $|\psi(t)\rangle = e^{-i\hat{H}t}|\psi_0\rangle$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

Initial state:

$$(\hat{H}_0 - \lambda) |\psi_0\rangle = 0$$

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 16 / 41

э

・ロト ・四ト ・ヨト ・ヨト

Initial state:

$$(\hat{H}_0 - \lambda) |\psi_0\rangle = 0$$

Time evolving state $|\psi(t)\rangle = e^{-i\hat{H}t}|\psi_0\rangle$

$$(e^{-i\hat{H}t}\hat{H}_0e^{i\hat{H}t}-\lambda)|\psi(t)\rangle \equiv \hat{M}(t)|\psi(t)\rangle = 0$$

 $|\psi(t)
angle$ is an eigenstate of $\hat{M}(t)$.

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

э

Initial state:

$$(\hat{H}_0 - \lambda) |\psi_0\rangle = 0$$

Time evolving state $|\psi(t)\rangle=e^{-i\hat{H}t}|\psi_0\rangle$

$$(e^{-i\hat{H}t}\hat{H}_0e^{i\hat{H}t}-\lambda)|\psi(t)\rangle \equiv \hat{M}(t)|\psi(t)\rangle = 0$$

 $|\psi(t)
angle$ is an eigenstate of $\hat{M}(t)$. This is, in general, a useless observation as

$$\hat{M}(t) = \hat{H}_0 - \lambda - it[\hat{H}, \hat{H}_0] + \frac{(it)^2}{2!}[\hat{H}, [\hat{H}, \hat{H}_0]] + \dots$$

is highly nonlocal. Note that $\hat{M}_{\mathsf{H}}(t) = \hat{H}_0 - \lambda$.

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Initial state:

$$(\hat{H}_0 - \lambda) |\psi_0\rangle = 0$$

Time evolving state $|\psi(t)\rangle=e^{-i\hat{H}t}|\psi_0\rangle$

$$(e^{-i\hat{H}t}\hat{H}_0e^{i\hat{H}t}-\lambda)|\psi(t)\rangle\equiv\hat{M}(t)|\psi(t)\rangle=0$$

 $|\psi(t)
angle$ is an eigenstate of $\hat{M}(t)$. This is, in general, a useless observation as

$$\hat{M}(t) = \hat{H}_0 - \lambda - it[\hat{H}, \hat{H}_0] + \frac{(it)^2}{2!}[\hat{H}, [\hat{H}, \hat{H}_0]] + \dots$$

is highly nonlocal. Note that $\hat{M}_{\rm H}(t) = \hat{H}_0 - \lambda$. Something remarkable occurs if

 $[\hat{H},\hat{H}_0]=ia_0\hat{Q}\qquad\text{with}\qquad [\hat{H},\hat{Q}]=0.$

We can define $\hat{\mathcal{H}}(t) \equiv \hat{H}_0 + a_0 t \hat{Q} - \lambda$, and $|\psi(t)\rangle$ is an eigenstate of $\hat{\mathcal{H}}(t)$. $\hat{\mathcal{H}}_{\mathsf{H}}(t) = \hat{H}_0 - \lambda$, $\hat{\mathcal{H}}(t)$ is a local conserved quantity!

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

Noninteracting fermions (or models mappable to them)

The domain wall $|11 \dots 1100 \dots 00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \, \hat{n}_l$$

・ロト ・四ト ・ヨト ・ヨト

Noninteracting fermions (or models mappable to them)

The domain wall $|11 \dots 1100 \dots 00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \, \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.})$$

Noninteracting fermions (or models mappable to them)

The domain wall $|11 \dots 1100 \dots 00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \, \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.})$$

Which means that $(a_0 = -1)$:

$$[\hat{H}, \hat{H}_0] = -i\hat{Q}, \quad \text{with} \quad \hat{Q} = \sum_l (i\hat{f}_{l+1}^{\dagger}\hat{f}_l + \text{H.c.}).$$

 \hat{Q} is the charge current, which is "conserved" (up to boundary terms).
The domain wall $|11 \dots 1100 \dots 00\rangle$ is the ground state of:

$$\hat{H}_0 = \sum_l l \, \hat{n}_l$$

The physical Hamiltonian is:

$$\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.})$$

Which means that $(a_0 = -1)$:

$$[\hat{H},\hat{H}_0]=-i\hat{Q},\qquad\text{with}\qquad \hat{Q}=\sum_l(i\hat{f}_{l+1}^\dagger\hat{f}_l+\text{H.c.}).$$

 \hat{Q} is the charge current, which is "conserved" (up to boundary terms). And

$$\hat{\mathcal{H}}(t) = \sum_{l} l \, \hat{n}_{l} - t \, \hat{Q} - \lambda$$

 $|\psi(t)\rangle$ is the ground state of $\hat{\mathcal{H}}(t)$ (up to corrections that vanish as $L \to \infty$).

Boundary terms are responsible for the nonvanishing charge current

$$[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L)$$

This means that $\langle \psi(t) | \hat{\mathcal{H}}(t) | \psi(t) \rangle \neq 0$.

Boundary terms are responsible for the nonvanishing charge current

$$[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L)$$

This means that $\langle \psi(t) | \hat{\mathcal{H}}(t) | \psi(t) \rangle \neq 0$.

One can compute it! Writing $\langle \psi_0 | \hat{\mathcal{H}}_{H}(t) | \psi_0 \rangle$, one gets

$$\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n+1)!} \langle \psi_0 | \underbrace{[\hat{H}, [\hat{H}, \dots [\hat{H}, \hat{Q}] \dots]]}_{n \text{ commutators}} | \psi_0 \rangle.$$

Boundary terms are responsible for the nonvanishing charge current

$$[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L)$$

This means that $\langle \psi(t) | \hat{\mathcal{H}}(t) | \psi(t) \rangle \neq 0$.

One can compute it! Writing $\langle \psi_0 | \hat{\mathcal{H}}_{\mathsf{H}}(t) | \psi_0 \rangle$, one gets

$$\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n+1)!} \langle \psi_0 | \underbrace{[\hat{H}, [\hat{H}, \dots [\hat{H}, \hat{Q}] \dots]]}_{n \text{ commutators}} | \psi_0 \rangle.$$

Quadratic term (n = 1):

$$-(i/2)t^{2}\langle\psi_{0}|[\hat{H},\hat{Q}]|\psi_{0}\rangle = -t^{2}\langle\psi_{0}|(\hat{n}_{1}-\hat{n}_{L})|\psi_{0}\rangle = -t^{2}$$

Leads to a redefinition of $\lambda \to \lambda(t) = \lambda - t^2$. Take N = L/2.

Boundary terms are responsible for the nonvanishing charge current

$$[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L)$$

This means that $\langle \psi(t) | \hat{\mathcal{H}}(t) | \psi(t) \rangle \neq 0$.

One can compute it! Writing $\langle \psi_0 | \hat{\mathcal{H}}_{\mathsf{H}}(t) | \psi_0 \rangle$, one gets

$$\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n+1)!} \langle \psi_0 | \underbrace{[\hat{H}, [\hat{H}, \dots [\hat{H}, \hat{Q}] \dots]]}_{n \text{ commutators}} | \psi_0 \rangle.$$

Quadratic term (n = 1):

$$-(i/2)t^2\langle\psi_0|[\hat{H},\hat{Q}]|\psi_0\rangle = -t^2\langle\psi_0|(\hat{n}_1 - \hat{n}_L)|\psi_0\rangle = -t^2$$

Leads to a redefinition of $\lambda \rightarrow \lambda(t) = \lambda - t^2$. Take N = L/2.

Higher orders vanish up to the term:

$$[(2N+1)t^{2N+2}/(2N+2)!] \times \mathcal{O}(1),$$

The result is exponentially small for $t \lesssim 2N/e$.

Boundary terms are responsible for the nonvanishing charge current

$$[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L)$$

This means that $\langle \psi(t) | \hat{\mathcal{H}}(t) | \psi(t) \rangle \neq 0$.

One can compute it! Writing $\langle \psi_0 | \hat{\mathcal{H}}_{\mathsf{H}}(t) | \psi_0 \rangle$, one gets

$$\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n+1)!} \langle \psi_0 | \underbrace{[\hat{H}, [\hat{H}, \dots [\hat{H}, \hat{Q}] \dots]]}_{n \text{ commutators}} | \psi_0 \rangle.$$

Quadratic term (n = 1):

$$-(i/2)t^2\langle\psi_0|[\hat{H},\hat{Q}]|\psi_0\rangle = -t^2\langle\psi_0|(\hat{n}_1 - \hat{n}_L)|\psi_0\rangle = -t^2$$

Leads to a redefinition of $\lambda \rightarrow \lambda(t) = \lambda - t^2$. Take N = L/2.

Higher orders vanish up to the term:

$$[(2N+1)t^{2N+2}/(2N+2)!] \times \mathcal{O}(1),$$

The result is exponentially small for $t \leq 2N/e$. Physically, for $t \leq N/2$ particles (holes) have not reached the edge of the lattice.

Marcos Rigol (Penn State)

Boundary terms are responsible for the nonvanishing charge current

$$[\hat{H}, \hat{Q}] = -2i(\hat{n}_1 - \hat{n}_L)$$

This means that $\langle \psi(t) | \hat{\mathcal{H}}(t) | \psi(t) \rangle \neq 0$.

One can compute it. Writing $\langle \psi_0 | \hat{\mathcal{H}}_{\mathsf{H}}(t) | \psi_0 \rangle$, one gets

$$\sum_{n=1}^{\infty} \frac{(-n)i^n t^{n+1}}{(n+1)!} \langle \psi_0 | \underbrace{[\hat{H}, [\hat{H}, \dots [\hat{H}, \hat{Q}] \dots]]}_{n \text{ commutators}} | \psi_0 \rangle.$$

Numerical verification

$$\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) \quad \rightarrow \quad |\psi(t)\rangle$$

$$\hat{\mathcal{H}}(t) = \sum_{l} l \, \hat{n}_{l} - t \, \hat{Q} - \lambda \quad \rightarrow \quad |\psi_{t}\rangle$$

Overlap

$$|\langle \psi_t | \psi(t) \rangle| \implies$$

September 18, 2017 19 / 41

Noninteracting fermions and hard-core bosons

$$\mathcal{C}_{j,l} = |\langle \hat{f}_j^\dagger \hat{f}_l \rangle|$$

$$\mathcal{C}_{j,l} = |\langle \hat{b}_j^\dagger \hat{b}_l
angle|$$

Outline

 Experiments with ultracold gases in 1D Emergent eigenstate solution Noninteracting fermions and related models Spinless fermions with nearest neighbor interactions (XXZ chain) Effective cooling during the melting of a Mott insulator Emergent Gibbs ensemble Speed up (quasi-)adiabatic transformations • "Quantum battery"

A (10) + A (10) +

Physical Hamiltonian:

$$\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \text{ with } \hat{h}_l(V) = -(\hat{f}_{l+1}^{\dagger}\hat{f}_l + \text{H.c.}) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2)$$

Physical Hamiltonian:

$$\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \text{ with } \hat{h}_l(V) = -(\hat{f}_{l+1}^{\dagger}\hat{f}_l + \text{H.c.}) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2)$$

The domain wall is a highly excited eigenstate of the "boost" operator:

$$\hat{H}_0(V) = \sum_{l=-N+1}^{N-1} l \, \hat{h}_l(V)$$

Physical Hamiltonian:

$$\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \text{ with } \hat{h}_l(V) = -(\hat{f}_{l+1}^{\dagger}\hat{f}_l + \text{H.c.}) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2)$$

The domain wall is a highly excited eigenstate of the "boost" operator:

$$\hat{H}_0(V) = \sum_{l=-N+1}^{N-1} l \, \hat{h}_l(V)$$

The commutator $[\hat{H}(V), \hat{H}_0(V)] = -i\hat{Q}(V)$ results in:

$$\hat{Q}(V) = \sum_{l=-N+1}^{N-2} \left\{ (i\hat{f}_{l+2}^{\dagger}\hat{f}_{l} + \text{H.c.}) - V(i\hat{f}_{l+1}^{\dagger}\hat{f}_{l} + \text{H.c.})(\hat{n}_{l+2} - 1/2) - V(i\hat{f}_{l+2}^{\dagger}\hat{f}_{l+1} + \text{H.c.})(\hat{n}_{l} - 1/2) \right\}$$

Marcos Rigol (Penn State)

Physical Hamiltonian:

$$\hat{H}(V) = \sum_{l=-N+1}^{N-1} \hat{h}_l(V), \text{ with } \hat{h}_l(V) = -(\hat{f}_{l+1}^{\dagger}\hat{f}_l + \text{H.c.}) + V(\hat{n}_l - 1/2)(\hat{n}_{l+1} - 1/2)$$

The domain wall is a highly excited eigenstate of the "boost" operator:

$$\hat{H}_0(V) = \sum_{l=-N+1}^{N-1} l \, \hat{h}_l(V)$$

The commutator $[\hat{H}(V), \hat{H}_0(V)] = -i\hat{Q}(V)$ results in:

$$\hat{Q}(V) = \sum_{l=-N+1}^{N-2} \left\{ (i\hat{f}_{l+2}^{\dagger}\hat{f}_{l} + \text{H.c.}) - V(i\hat{f}_{l+1}^{\dagger}\hat{f}_{l} + \text{H.c.})(\hat{n}_{l+2} - 1/2) - V(i\hat{f}_{l+2}^{\dagger}\hat{f}_{l+1} + \text{H.c.})(\hat{n}_{l} - 1/2) \right\}$$

And the emergent Hamiltonian is:

$$\hat{\mathcal{H}}_V(t) = \hat{H}_0(V) + t\,\hat{Q}(V)$$

Marcos Rigol (Penn State)

Numerical verification

 $\hat{H}(V) \rightarrow |\psi(t)\rangle$ $\hat{H}_V(t) \rightarrow |\psi_t\rangle$ Overlap $|\langle \psi_t | \psi(t) \rangle|$

Site and momentum occupations

$$\hat{n}_l = \hat{f}_l^{\dagger} \hat{f}_l n(q) = \frac{1}{2N+1} \sum_{j,l} e^{iq(j-l)} \langle \hat{f}_j^{\dagger} \hat{f}_l \rangle$$

Marcos Rigol (Penn State)

September 18, 2017

Outline

 Experiments with ultracold gases in 1D Emergence of guasi-condensates at finite momentum Noninteracting fermions and related models Spinless fermions with nearest neighbor interactions (XXZ chain) Emergent Gibbs ensemble Effective cooling during the melting of a Mott insulator Emergent Gibbs ensemble Speed up (quasi-)adiabatic transformations • "Quantum battery"

A (10) A (10)

Hard-core bosons at finite temperature

One-particle density matrix (grand-canonical ensemble)

 $\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i\hat{H}t} \hat{b}_i^{\dagger} \hat{b}_j e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right] \quad \text{where} \quad Z_0 = \text{Tr} [e^{-(\hat{H}_0 - \mu \hat{N})/T}]$

MR, PRA 72, 063607 (2005); W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 25 / 41

Hard-core bosons at finite temperature

One-particle density matrix (grand-canonical ensemble)

$$\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i\hat{H}t} \hat{b}_i^{\dagger} \hat{b}_j e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right] \quad \text{where} \quad Z_0 = \text{Tr} [e^{-(\hat{H}_0 - \mu \hat{N})/T}]$$

Mapping to noninteracting fermions

$$\rho_{ij}(t) = Z_0^{-1} \text{Tr}\left[e^{i\hat{H}t} \prod_{\alpha=1}^{i-1} e^{-i\pi \hat{f}_{\alpha}^{\dagger} \hat{f}_{\alpha}} \hat{f}_i^{\dagger} \hat{f}_j \prod_{\beta=1}^{j-1} e^{i\pi \hat{f}_{\alpha}^{\dagger} \hat{f}_{\alpha}} e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right]$$

MR, PRA 72, 063607 (2005); W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 25 / 41

Hard-core bosons at finite temperature

One-particle density matrix (grand-canonical ensemble)

$$\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i\hat{H}t} \hat{b}_i^{\dagger} \hat{b}_j e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right] \quad \text{where} \quad Z_0 = \text{Tr} [e^{-(\hat{H}_0 - \mu \hat{N})/T}]$$

Mapping to noninteracting fermions

$$\rho_{ij}(t) = Z_0^{-1} \text{Tr} \left[e^{i\hat{H}t} \prod_{\alpha=1}^{i-1} e^{-i\pi \hat{f}_{\alpha}^{\dagger}\hat{f}_{\alpha}} \hat{f}_i^{\dagger} \hat{f}_j \prod_{\beta=1}^{j-1} e^{i\pi \hat{f}_{\alpha}^{\dagger}\hat{f}_{\alpha}} e^{-i\hat{H}t} e^{-(\hat{H}_0 - \mu \hat{N})/T} \right]$$

Exact one-particle density matrix

$$\begin{split} \rho_{ij}(t) &= \frac{(-1)^{i-j}}{Z} \bigg\{ \det \bigg[U_0^{\dagger} e^{iHt} O_j (I+A) O_i e^{-iHt} U_0 + e^{-(E_0-\mu)/T} \bigg] \\ &- \det \bigg[U_0^{\dagger} e^{iHt} O_j O_i e^{-iHt} U_0 + e^{-(E_0-\mu)/T} \bigg] \bigg\} \end{split}$$

Computation time $\propto L^5$: ~ 1000 sites

MR, PRA 72, 063607 (2005); W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

Melting of a finite-temperature Mott insulator

W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

September 18, 2017 26 / 41

< • > < • >

Melting of a finite-temperature Mott insulator

Marcos Rigol (Penn State)

September 18, 2017 27 / 41

< 17 ▶

Outline

 Experiments with ultracold gases in 1D Emergence of guasi-condensates at finite momentum

- Noninteracting fermions and related models
- Spinless fermions with nearest neighbor interactions (XXZ chain)

Emergent Gibbs ensemble

- Effective cooling during the melting of a Mott insulator
- Emergent Gibbs ensemble
- - Speed up (quasi-)adiabatic transformations
 - "Quantum battery"

A (10) + A (10) +

Initial state is a stationary state of:

$$\hat{H}_0 = -\sum_l (\hat{b}_{l+1}^{\dagger} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \, \hat{n}_l \,.$$

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 29 / 41

Initial state is a stationary state of:

$$\hat{H}_0 = -\sum_l (\hat{b}_{l+1}^{\dagger} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \, \hat{n}_l \,.$$

The physical Hamiltonian is $\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.})$

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 29 / 41

Initial state is a stationary state of:

$$\hat{H}_0 = -\sum_l (\hat{b}_{l+1}^{\dagger} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \,\hat{n}_l \,.$$

The physical Hamiltonian is $\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.})$ The emergent Hamiltonian takes the form:

$$\hat{\mathcal{H}}(t) = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) - \lambda + V_{1} \left[\sum_{l} l \, \hat{n}_{l} - t \sum_{l} (i \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + t^{2} (\hat{n}_{1} - \hat{n}_{L}) \right]$$

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

Initial state is a stationary state of:

$$\hat{H}_0 = -\sum_l (\hat{b}_{l+1}^{\dagger} \hat{b}_l + \text{H.c.}) + V_1 \sum_l l \,\hat{n}_l \,.$$

The physical Hamiltonian is $\hat{H} = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.})$ The emergent Hamiltonian takes the form:

$$\hat{\mathcal{H}}(t) = -\sum_{l} (\hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) - \lambda + V_{1} \left[\sum_{l} l \, \hat{n}_{l} - t \sum_{l} (i \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + t^{2} (\hat{n}_{1} - \hat{n}_{L}) \right].$$

 $\hat{\mathcal{H}}(t)$ can be rewritten as (replacing $\hat{n}_1 \rightarrow 1$ and $\hat{n}_L \rightarrow 0$)

$$\hat{\mathcal{H}}(t) = -\mathcal{A}(t) \sum_{l} (e^{-i\varphi(t)} \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + V_1 \sum_{l} l \, \hat{n}_l - (\lambda - V_1 t^2),$$

here $\mathcal{A}(t) = \sqrt{1 + (V_1 t)^2}$ and $\varphi(t) = \arctan(V_1 t).$

L. Vidmar, D. Iyer, and MR, PRX 7, 021012 (2017).

Marcos Rigol (Penn State)

W

Initial state:

$$\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \text{ where } Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}]$$

L. Vidmar, W. Xu, and MR, PRA 96, 013608 (2017).

Marcos Rigol (Penn State)

September 18, 2017 30 / 41

э

ヘロト ヘヨト ヘヨト ヘヨト

Initial state:

$$\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \quad \text{where} \quad Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}]$$

Time evolving state:

$$\hat{\rho}(t) = Z_0^{-1} e^{-i\hat{H}t} e^{-\beta\hat{H}_0} e^{i\hat{H}t} = Z_0^{-1} \exp\left(-\beta \left[e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t}\right]\right).$$

L. Vidmar, W. Xu, and MR, PRA 96, 013608 (2017).

Marcos Rigol (Penn State)

э

ヘロト ヘヨト ヘヨト ヘヨト

Initial state:

$$\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \quad \text{where} \quad Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}]$$

Time evolving state:

$$\hat{\rho}(t) = Z_0^{-1} e^{-i\hat{H}t} e^{-\beta\hat{H}_0} e^{i\hat{H}t} = Z_0^{-1} \exp\left(-\beta \left[e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t}\right]\right).$$

Again, one can introduce an operator $\hat{\mathcal{M}}'(t) \equiv e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t}$ so that:

$$\hat{\rho}(t) = Z_0^{-1} e^{-\beta \hat{\mathcal{M}}'(t)}.$$

L. Vidmar, W. Xu, and MR, PRA 96, 013608 (2017).

Marcos Rigol (Penn State)

Initial state:

$$\hat{\rho}_0 = Z_0^{-1} e^{-\beta \hat{H}_0}, \text{ where } Z_0 = \text{Tr}[e^{-\beta \hat{H}_0}]$$

Time evolving state:

$$\hat{\rho}(t) = Z_0^{-1} e^{-i\hat{H}t} e^{-\beta\hat{H}_0} e^{i\hat{H}t} = Z_0^{-1} \exp\left(-\beta \left[e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t}\right]\right).$$

Again, one can introduce an operator $\hat{\mathcal{M}}'(t) \equiv e^{-i\hat{H}t}\hat{H}_0 e^{i\hat{H}t}$ so that:

$$\hat{\rho}(t) = Z_0^{-1} e^{-\beta \hat{\mathcal{M}}'(t)}$$

If $\hat{\mathcal{M}}'(t)$ is a local operator, $\hat{\mathcal{M}}'(t) \equiv \hat{\mathcal{H}}'(t)$:

$$\hat{\Sigma}(t) = Z_0^{-1} e^{-\beta \hat{\mathcal{H}}'(t)}$$

Then the time-evolving state is a thermal state of an emergent Hamiltonian. *Note that the temperature remains the same as in the initial state.*

L. Vidmar, W. Xu, and MR, PRA 96, 013608 (2017).

Marcos Rigol (Penn State)

Effective temperature

Effective Hamiltonian:

$$\hat{\mathcal{H}}_{\text{eff}}(\tau) = -\sum_{l} (e^{-i\varphi(\tau)} \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + \frac{V_1}{\sqrt{1 + (V_1\tau)^2}} \sum_{l} l \, \hat{n}_l,$$

and effective temperature $T_{\text{eff}}(\tau) = T/\sqrt{1 + (V_1 \tau)^2}$.

W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 31 / -

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Effective temperature

Effective Hamiltonian:

$$\hat{\mathcal{H}}_{\text{eff}}(\tau) = -\sum_{l} (e^{-i\varphi(\tau)} \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + \frac{V_1}{\sqrt{1 + (V_1 \tau)^2}} \sum_{l} l \, \hat{n}_l,$$

and effective temperature $T_{\text{eff}}(\tau) = T/\sqrt{1 + (V_1 \tau)^2}$.

W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

Effective temperature

Effective Hamiltonian:

$$\hat{\mathcal{H}}_{\text{eff}}(\tau) = -\sum_{l} (e^{-i\varphi(\tau)} \hat{f}_{l+1}^{\dagger} \hat{f}_{l} + \text{H.c.}) + \frac{V_1}{\sqrt{1 + (V_1 \tau)^2}} \sum_{l} l \, \hat{n}_l,$$

and effective temperature $T_{\text{eff}}(\tau) = T/\sqrt{1 + (V_1 \tau)^2}$.

W. Xu and MR, PRA 95, 033617 (2017).

Marcos Rigol (Penn State)

Outline

 Experiments with ultracold gases in 1D Emergence of guasi-condensates at finite momentum Noninteracting fermions and related models Spinless fermions with nearest neighbor interactions (XXZ chain) Effective cooling during the melting of a Mott insulator Emergent Gibbs ensemble Maximal work from a "quantum battery" Speed up (quasi-)adiabatic transformations • "Quantum battery"

A (10) × A (10) × A (10) ×

Transfer from power-law to box traps

R. Modak, L. Vidmar, and MR, arXiv:1608.08453.

Marcos Rigol (Penn State)

September 18, 2017 33 / 41

Outline

 Experiments with ultracold gases in 1D Emergence of guasi-condensates at finite momentum Noninteracting fermions and related models Spinless fermions with nearest neighbor interactions (XXZ chain) Effective cooling during the melting of a Mott insulator Emergent Gibbs ensemble Maximal work from a "quantum battery" Speed up (quasi-)adiabatic transformations "Quantum battery"

A (10) > A (10) > A (10) >

"Quantum battery"

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 35 / 41
Initial state (two chains with L/2 sites)

$$|\psi_I\rangle = |\psi_I\rangle_1 \otimes |\psi_I\rangle_2$$
, with $|\psi_I\rangle_1 = \prod_{l=1}^{L/2} \hat{c}_l^{\dagger} |\emptyset\rangle_1$, and $|\psi_I\rangle_2 = |\emptyset\rangle_2$.

R. Modak, L. Vidmar, and MR, arXiv:1608.08453.

Marcos Rigol (Penn State)

Initial state (two chains with L/2 sites)

$$|\psi_I\rangle = |\psi_I\rangle_1 \otimes |\psi_I\rangle_2$$
, with $|\psi_I\rangle_1 = \prod_{l=1}^{L/2} \hat{c}_l^{\dagger} |\emptyset\rangle_1$, and $|\psi_I\rangle_2 = |\emptyset\rangle_2$.

Work extracted for $\hat{H}_{\ell} = -J \sum_{l=1}^{L/2-1} (\hat{c}_{l}^{\dagger} \hat{c}_{l+1} + \text{H.c.}), \ \ell = 1, 2$:

$$W = \operatorname{Tr}\left[\left(\hat{\rho}^{I} - \hat{\rho}^{F} \right) \left(\hat{H}_{1} + \hat{H}_{2} \right) \right].$$

R. Modak, L. Vidmar, and MR, arXiv:1608.08453.

Initial state (two chains with L/2 sites)

$$|\psi_I\rangle = |\psi_I\rangle_1 \otimes |\psi_I\rangle_2$$
, with $|\psi_I\rangle_1 = \prod_{l=1}^{L/2} \hat{c}_l^{\dagger} |\emptyset\rangle_1$, and $|\psi_I\rangle_2 = |\emptyset\rangle_2$.

Work extracted for $\hat{H}_{\ell} = -J \sum_{l=1}^{L/2-1} (\hat{c}_{l}^{\dagger} \hat{c}_{l+1} + \text{H.c.}), \ \ell = 1, 2$:

$$W = \operatorname{Tr}\left[\left(\hat{\rho}^{I} - \hat{\rho}^{F} \right) \left(\hat{H}_{1} + \hat{H}_{2} \right) \right].$$

(i) Connect the chains. The time-evolving state is the ground state of

$$\hat{\mathcal{H}}(t) = -\sum_{l=1}^{L-1} (e^{i\pi/2} \hat{c}_l^{\dagger} \hat{c}_{l+1} + \text{H.c.}) + \frac{1}{t} \sum_{l=1}^{L} l \, \hat{n}_l \,,$$

so we quench to $\hat{\mathcal{H}}(t_Q)$ at time $t_Q < L/(2v_{\text{max}}) = L/4$.

R. Modak, L. Vidmar, and MR, arXiv:1608.08453.

Marcos Rigol (Penn State)

Initial state (two chains with L/2 sites)

$$|\psi_I\rangle = |\psi_I\rangle_1 \otimes |\psi_I\rangle_2$$
, with $|\psi_I\rangle_1 = \prod_{l=1}^{L/2} \hat{c}_l^{\dagger} |\emptyset\rangle_1$, and $|\psi_I\rangle_2 = |\emptyset\rangle_2$.

Work extracted for $\hat{H}_{\ell} = -J \sum_{l=1}^{L/2-1} (\hat{c}_{l}^{\dagger} \hat{c}_{l+1} + \text{H.c.}), \ \ell = 1, 2$:

$$W = \operatorname{Tr}\left[\left(\hat{\rho}^{I} - \hat{\rho}^{F} \right) \left(\hat{H}_{1} + \hat{H}_{2} \right) \right].$$

(i) Connect the chains. The time-evolving state is the ground state of

$$\hat{\mathcal{H}}(t) = -\sum_{l=1}^{L-1} (e^{i\pi/2} \hat{c}_l^{\dagger} \hat{c}_{l+1} + \mathsf{H.c.}) + \frac{1}{t} \sum_{l=1}^{L} l \, \hat{n}_l \,,$$

so we quench to $\hat{\mathcal{H}}(t_Q)$ at time $t_Q < L/(2v_{\max}) = L/4$.

(ii) Transform $\hat{\mathcal{H}}(t_Q) \rightarrow \hat{H}_1 + \hat{H}_2$ quasi-statically:

We turn off the linear trap and the phase $\pi/2$ in N_s equal steps, then disconnect the chains. Assume relaxation to the GGE.

R. Modak, L. Vidmar, and MR, arXiv:1608.08453.

Marcos Rigol (Penn State)

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 37 / 41

Marcos Rigol (Penn State)

Emergent eigenstate solution

September 18, 2017 38 / 41

Marcos Rigol (Penn State)

September 18, 2017 39 / 41

- The emergent eigenstate solution explains why ground-state-like power-law correlations emerge during the meting of domain walls
- Only one conserved (or quasi-conserved) quantity is needed for the emergent Hamiltonian construction to work
 - Nonintegrable systems close to integrability?
 - More general nonintegrable systems?
- An effective cooling takes place during the melting of finite-*T* Mott insulators (internal energy is converted into center of mass energy).
- The emergent Gibbs ensemble can be used to describe the dynamics of finite-temperature initial states.
- Emergent Hamiltonians can be used to speed up adiabatic processes, and to speed up maximal work extraction.

Collaborators

- Deepak Iyer (Penn State → Bucknell)
- Ranjan Modak (Penn State)
- Lev Vidmar (Penn State Jožef Stefan Institute)
- Wei Xu (Penn State)
- Collaborators in the Bose-Hubbard and Fermi-Hubbard projects
- Alejandro Muramatsu (Buenos Aires 1951- Stuttgart 2015)

Supported by:

